Supplemental Table 1. Keefover-Ring et al. - Phenylpropanoid glycosides of Mimulus guttatus (yellow monkeyflower)

C- 1 - Calceolarioside A			2 - Calceolarioside B		3 - Conandroside		4 - Verbascoside		
no.	$\delta_{\rm H}$	δ _C	δ _H	δ _C	$\delta_{\rm H}$	δ_H δ_C		δ _C	
Hydro	oxyphenylethyl moiety								
1		131.5		131.4		131.4		131.5	
2	6.69 (<i>d</i> , 1.8)	117.1	6.66 (<i>d</i> , 1.8)	117.1	6.69 (<i>d</i> , 1.8)	117.1	6.69 (<i>d</i> , 1.8)	117.1	
3		146.1		146.1		146.1		146.1	
4		144.7		144.7		144.7		144.7	
5	6.67 (<i>d</i> , 8.0)	116.3	6.62 (<i>d</i> , 8.0)	116.3	6.67 (<i>d</i> , 8.0)	116.3	6.67 (<i>d</i> , 8.0)	116.3	
6	6.56 (<i>dd</i> , 1.8, 8.0)	121.3	6.53 (<i>dd</i> , 1.8, 8.0)	121.2	6.56 (<i>dd</i> , 1.8, 8.0)	121.3	6.56 (<i>dd</i> , 1.8, 8.0)	121.3	
7	2.79 (<i>m</i>)	36.6	2.77 (<i>m</i>)	36.7	2.79 (<i>m</i>)	79 (<i>m</i>) 36.5		36.6	
8	3.72 (<i>m</i>); 4.04 (<i>m</i>)	72.2	3.95 (<i>m</i>), 3.70 (<i>m</i>)	72.4	3.72 (<i>m</i>); 4.03 (<i>m</i>) 72.2		3.72 (<i>m</i>); 4.04 (<i>m</i>)	72.3	
Gluco	osyl moiety								
1'	4.36 (<i>d</i> , 7.7)	104.4	4.32 (<i>d</i> , 7.9)	104.5	4.41 (<i>d</i> , 8.0)	103.9	4.37 (<i>d</i> , 8.0)	104.2	
2'	3.30 (obs. by CHD ₂ OD)	75.2	3.20 (<i>t</i> , 8.3)	75.1	3.47 (<i>dd</i> , 8.0, 8.9)	75.7	3.38 (<i>t</i> , 8.5)	76.2	
3'	3.62 (<i>m</i>)	75.8	3.36 (<i>m</i>)	77.9	3.83 (<i>t</i> , 9.3)	85.2	3.81 (<i>t</i> , 9.2)	81.6	
4'	4.85 (<i>t</i> , 9.4)	72.5	3.35 <i>(m)</i>	71.7	4.91 (<i>t</i> , 9.2)	70.9	4.91 (<i>t</i> , 9.3)	70.6	
5'	3.50 (<i>t</i> , 9.3)	76.1	3.51 (<i>m</i>)	75.5	3.53 (<i>m</i>)	76.0	3.53 (<i>m</i>)	76.1	
6'	3.54 (<i>m</i>); 3.62 (<i>m</i>)	62.5	4.49 (<i>dd</i> , 8.0, 1.9), 4.33 (m)	64.6	3.54 (<i>m</i>); 3.62 (<i>m</i>)	62.3	3.53 (<i>m</i>); 3.62 (<i>m</i>)	62.4	

Supplemental Table 1a. ¹H and ¹³C NMR spectroscopic data for compounds 1-4 in CD₃OD from the foliage of *Mimulus guttatus*. H-C

designations confirmed with HSQC. Multiplet, and J (Hz) within parenthesis. See Figure 1 for carbon designations

2 | Supplemental Table 1. Keefover-Ring *et al.*

Outer sugar moiety

1"	4.43 (<i>d</i> , 7.9)	106.9	5.18 (<i>d</i> , 8.0)	103.0
2"	3.14 (<i>dd</i> , 7.9, 8.6)	74.9	3.91 (<i>t</i> , 8.6)	72.4
3"	3.26 (<i>t</i> , 9.0)	77.6	3.57 (<i>m</i>)	72.1
4"	3.33 (<i>m</i>)	71.0	3.28 (<i>t</i> , 9.6)	73.8
5"	3.06 (<i>dd</i> , 10.8, 10.4); 3.63 (<i>m</i>)	67.3	3.56 (<i>m</i>)	70.4
6"			1.08 (<i>d</i> , 6.2)	18.5

Hydroxycinnamic acid moiety

1"'		127.7		127.7		127.7		127.6
2"'	7.04 (<i>d</i> , 1.8)	115.2	7.02 (<i>d</i> , 1.8)	115.0	7.05 (<i>d</i> , 1.7)	115.1	7.04 (<i>d</i> , 1.8)	115.2
3"'		146.8		146.8		146.9		146.9
4"'		149.7		149.7		149.7		149.9
5"'	6.77 (<i>d</i> , 8.1)	116.5	6.76 (<i>d</i> , 8.2)	116.5	6.77 (<i>d</i> , 8.2)	116.5	6.77 (<i>d</i> , 8.1)	116.5
6"''	6.95 (<i>dd</i> , 1.8, 8.1)	123.1	6.88 (<i>dd</i> , 1.8, 8.2)	123.2	6.95 (<i>dd</i> , 1.7, 8.2)	123.0	6.94 (<i>dd</i> , 1.8, 8.1)	123.2
β	7.59 (<i>d</i> , 15.9)	147.6	7.55 (<i>d</i> , 15.9)	147.2	7.56 (<i>d</i> , 15.9)	147.2	7.58 (<i>d</i> , 15.9)	148.0
α	6.29 (<i>d</i> , 15.9)	114.7	6.28 (<i>d</i> , 15.9)	114.8	6.25 (<i>d</i> , 15.9)	115.1	6.26 (<i>d</i> , 15.9)	114.7
C=O		168.6		169.2		168.4		168.3

3 | Supplemental Table 1. Keefover-Ring *et al.*

Supplemental Table 1b. COSY and HMBC two-dimensional NMR spectroscopic data for compounds 1-4 in CD₃OD from the foliage of *Mimulus guttatus*. H-C designations confirmed with HSQC. Key HMBC correlations for structure elucidation in bold face. See Figure 1 for carbon designations. * = long range

C-	C- 1 - Calceolarioside A		2 - Calceolarioside B		3 - Co	nandroside	4 - Verbascoside		
no.	COSY	HMBC	COSY	HMBC	COSY	HMBC	COSY	Y HMBC	
Hydro	oxyphen	ylethyl moiety							
1									
2	36.6.121.3.144.7.146.1		36.7, 121.2, 131.4, 144.7,			36.5, 121.3, 144.7, 146.1	36.6. 121.3. 144.7		
			146.1				50.0, 121.5, 11.17		
3									
4									
5	6	117.1, 131.5, 144.7, 146.1	6	117.1, 121.2, 131.4, 144.7, 146.1	6	131.4, 144.7, 146.1	6	131.5, 144.7, 146.1	
6	5	363 1171 1447 1461	5	367 1171 1447	5	36.5, 117.1, 131.4, 144.7,	5	366 1171 1447	
0	5	50.5, 117.1, 144.7, 140.1	5	50.7, 117.1, 144.7	5	146.1		50.0, 117.1, 144.7	
7	8	72.2, 117.1, 121.3, 131.5	8	72.4, 117.1, 121.2, 131.4	8	72.2, 117.1, 121.3, 131.4	8	72.3, 117.1, 121.3, 131.5	
8	7,8	36.6, 104.4 , 131.5	7, 8	36.7, 104.5 , 131.4	7	36.5, 103.9 , 131.4	7,8	36.6, 104.2 , 131.5	
C	.1 .1	1							
Centr			21		21				
1	2	72.2, 76.1	2	72.4, 77.9	2	72.2, 76.0, 85.2	2	72.3, 76.1, 81.6	
2'	1', 3'	75.8, 104.4	1', 3'	77.9, 104.5	1', 3'	85.2, 103.9	1', 3'	81.6, 104.2	
3'	2', 4'	72.5, 75.2	2', 4'	71.7, 75.1	2', 4'	70.9, 74.9, 106.9	2', 4'	76.2, 70.6, 103.0	
4'	3', 5'	62.5, 76.1, 168.6	5'	64.6, 75.5, 77.9	3', 5'	62.3, 76.0, 85.2, 168.4	3', 5'	62.4, 76.1, 81.6, 168.3	
5'	4', 6'	62.5, 72.5, 76.1, 104.4	4', 6'	64.6, 71.7, 77.9, 104.5	4', 6'	62.3, 70.9, 76.0, 85.2, 103.9	4', 6'	62.4, 70.6, 76.1, 81.6, 104.2	
6'	5'	72.5, 76.1	5', 6'	75.5, 169.2	5', 6'	70.9	5', 6'	70.6, 76.1, 104.2	

4 Supplemental Table 1. Keefover-Ring *et al.*

Outer sugar moiety

1"	2"	67.3, 85.2	2"	70.4, 72.4, 81.6
2"	1", 3"	71.0, 77.6, 106.9	1", 3"	72.1, 73.8
3"	2", 4"	71.0, 75.7	2", 4"	72.1, 73.8, 70.4
4"	3", 5"	67.3, 77.6	3", 5"	18.5, 70.4, 72.1
5"	4"	71.0, 77.6, 106.9	6"	70.6, 73.8, 103.0
6"			5"	70.4, 73.8

Hydroxycinnamic acid moiety

1"'								
2"'	6"'*	123.1, 146.8, 147.6, 149.7		123.2, 147.2, 149.7	6"'*	123.0, 146.9, 147.2, 149.7		123.2, 146.9, 148.0, 149.9
3"'								
4"'								
5"'	6"''	115.2, 123.1, 146.8, 149.7	6"'	115.0, 123.2, 127.7, 147.2, 149.7	6"'	123.0, 127.7, 146.9, 149.7	6"'	123.2, 127.6, 146.9, 149.9
6"''	5"'	115.2, 116.5, 147.6, 149.7	5"'	115.0, 116.5, 147.2, 149.7	2"'*, 5"'	115.1, 116.5, 147.2, 149.7	5"'	115.2, 148.0, 149.9
β	α	114.7, 115.2, 123.1, 127.7, 147.6, 168.6	α	115.0, 123.2, 127.7, 169.2	α	115.1, 123.0, 127.7, 168.4	α	115.2, 123.2, 127.6, 168.3
α	β	127.7, 147.6, 168.6	β	127.7, 169.2	β	127.7, 168.4	β	127.6, 168.3
С=О								

Appendix 1. Keefover-Ring *et al.* **Phenylpropanoid glycosides of** *Mimulus guttatus* (yellow **monkeyflower**) - High-resolution tandem mass spectra of five identified (1-5) and 11 putative phenylpropanoid glycosides from the foliage of *Mimulus guttatus*. See Section 3.4 in Experimental for MS/MS conditions, Figure 1 for fragmentation patterns of compounds 1-5, and Table 2 for a list of main MS² and MS³ (when available) fragments of all compounds

Compound 1 – Calceolarioside A [corresponds to PPG 4 in Holeski et al. (2013)] MS^2 spectrum of precursor ion [M-H]⁻ m/z 477.1408

 MS^3 spectrum of product ion $[M-H]^- m/z$ 315.1085

Compound 2 – Calceolarioside B

 MS^2 spectrum of precursor ion $[M-H]^- m/z$ 477.1404

 MS^3 spectrum of product ion $[M-H]^- m/z$ 315.1083

Compound 3 – Conandroside

 MS^2 spectrum of precursor ion $[M-H]^- m/z$ 609.1825

 MS^3 spectrum of product ion $[M-H]^- m/z$ 447.1508

Compound 4 – Verbascoside

 MS^2 spectrum of precursor ion $[M-H]^- m/z$ 623.1974

 MS^3 spectrum of product ion $[M-H]^- m/z$ 461.1665

Compound 5 – Mimuloside [corresponds to PPG 5 in Holeski et al. (2013)] MS^2 spectrum of precursor ion [M-H]⁻ m/z 623.1978

 MS^3 spectrum of product ion $[M-H]^- m/z$ 447.1506

 MS^2 spectrum of precursor ion $[M-H]^- m/z$ 477.1406

 MS^3 spectrum of product ion $[M-H]^- m/z$ 315.1082

7 Appendix 1. Keefover-Ring *et al.*

Compound 7

 MS^2 spectrum of precursor ion [M-H]⁻ m/z 477.1397

 MS^2 spectrum of precursor ion [M-H]⁻ m/z 477.1399

 MS^3 spectrum of product ion $[M-H]^- m/z$ 315.1080

9 Appendix 1. Keefover-Ring *et al.*

Compound 9

 MS^2 spectrum of precursor ion $[M-H]^- m/z$ 609.1824

Compound 10 [corresponds to PPG 3 in Holeski et al. (2013)]

 MS^2 spectrum of precursor ion $[M-H]^- m/z$ 609.1818

 MS^3 spectrum of product ion $[M-H]^- m/z$ 447.1505

 MS^2 spectrum of precursor ion [M-H]⁻ m/z 609.1837

 MS^3 spectrum of product ion $[M-H]^- m/z$ 447.1504

 MS^2 spectrum of precursor ion $[M-H]^- m/z$ 609.1830

 MS^3 spectrum of product ion $[M-H]^- m/z$ 447.1510

 MS^2 spectrum of precursor ion [M-H]⁻ m/z 609.1832

 MS^3 spectrum of product ion $[M-H]^- m/z$ 447.1510

 MS^2 spectrum of precursor ion [M-H]⁻ m/z 609.1829

Compound 15 [corresponds to PPG 6 in Holeski et al. (2013)]

 MS^2 spectrum of precursor ion $[M-H]^- m/z$ 637.2146

Compound 16 [corresponds to PPG 7 in Holeski et al. (2013)]

 MS^2 spectrum of precursor ion [M-H]⁻ m/z 651.2297

Appendix 2. Keefover-Ring *et al.* Phenylpropanoid glycosides of *Mimulus guttatus* (yellow monkeyflower)

2.1. UHPLC-UV-TOF/MS diode array (UV) and total ion chromatograms (TIC) of the (**a**) crude extract used for isolation of compounds **1-3** and **5**, (**b**) a verbascoside standard (from *Plantago lanceolata*), and (**c-g**) individual *M. guttatus* foliage samples. See Table A1 for *M. guttatus* sample location information and Table 2 for a list of UV retention times corresponding to the numbered peaks

2.2. UV spectra (210-400 nm) of five identified (1-5) phenylpropanoid glycosides from *Mimulus guttatus* foliage. See Table 2 for UV λ_{max} values

See Section 3.3 in Experimental for UHPLC-UV-TOF/MS conditions

Table A1. *Mimulus guttatus* population locations as numbered in Holeski et al. (2013) for samples analyzed in this study. Population F was not included in Holeski et al. (2013). Representative voucher specimens to be added to the Deaver Herbarium (ASC) at Northern Arizona University

Population	Location	Coordinates (lat., long.)	Elevation (m)
2	Tuolumne county, CA	37.8742, -120.5083	94
3	Monterey county, CA	36.0629, -121.5922	5
10	Mendocino county, CA	39.0360, -123.6905	5
12	Ravalli county, MT	45.9550, -113.8695	2172
F	Lane county, OR	43.9666, -124.1308	2

2.1. UHPLC-UV-TOF/MS diode array (UV) and total ion chromatograms (TIC) of the (**a**) crude extract used for isolation of compounds 1-3 and 5, (**b**) a verbascoside standard (from *Plantago lanceolata*), and (**c-g**) individual *M. guttatus* foliage samples. See Table A1 for *M. guttatus* sample location information and Table 2 for a list of UV retention times corresponding to the numbered peaks

a. UV (left) and TIC (right) chromatograms of crude extract used to isolate 1-3 and 5.

b. UV (left) and TIC (right) chromatograms of verbascoside standard

c. UV (left) and TIC (right) chromatograms of sample 27 from population 2

d. UV (left) and TIC (right) chromatograms of sample 55 from population 3

e. UV (left) and TIC (right) chromatograms of sample 180 from population F

f. UV (left) and TIC (right) chromatograms of sample 255 from population 10

g. UV (left) and TIC (right) chromatograms of sample 312 from population 12

Appendix 2.2. UV spectra (210-400 nm) of five identified (1-5) phenylpropanoid glycosides from the foliage of *Mimulus guttatus*. See Table 2 for λ_{max} values

Calceolarioside A (1)

6 Appendix 2. Keefover-Ring *et al.*

Conandroside (3)

